デジタル信号を正しく再生するには? ~サンプリング定理の意味

Twitterで以下のように発言をしたら、案の定、あまり理解されなかったので頑張って説明してみます。

サンプリング定理は「信号の最大周波数」の2倍より早い速度でサンプリングすれば元信号の情報は完全に再現できる(一意に決まる)、とは言ってるけども、サンプリングしたデータをそのまま再生したとき元波形が再現できるとは一言も言ってない。

https://twitter.com/nabe_abk/status/777874934424940544

なおこの記事では、フーリエ変換が存在する連続信号(関数)のみを考えることにします。

続きを読む

2016/07/06(水)Fusion PCBが微妙だったので、Elecrowを使ってみた

プリント基板の製作に、普段P板を使っていてFusion PCBに移行しつつあったのですが、色々と問題があってElecrow(紹介リンク)を使ってみることにしました。

ついでにその他格安基板屋さんについてもまとめています。

Fusion PCBの問題

  • 製造は速いけども、早く発送する気がまるでない。
  • 一度登録したクレジットカード情報を削除する方法がない。
  • キャンセル品*1の返金を忘れられて、1ヶ月待たされた。

*1 : 注文後即キャンセル

Elecrowのルール

Fusion PCBと同じ機械なのか非常によく似ています。

項目P板Fusion PCBElecrowPCBWay
最小パターン幅0.127mm0.1524mm0.15mm0.15mm/0.1mm*2
最小パターン間隔0.127mm0.1524mm0.15mm0.15mm/0.1mm*2
最小パッド間隔0.127mm0.1524mm0.15mm0.15mm/0.1mm*2
最小シルク高さ1.0mm1.0mm0.8mm0.8mm
最小シルク線幅0.127mm0.1524mm0.15mm0.15mm
最小ホール経0.3mm0.3mm0.3mm0.3mm/0.2mm*3
最小ランド経(PTH)0.6mmHole+0.3048mmHole+0.1524mmHole+0.15mm
外形線との間隔0.3mm*4-0.7mm*5-
銅箔厚18um/35um35um/70um*635um/70um35um/70um/105um

*2 : 0.15mm未満は特注

*3 : 0.25mm, 0.2mmは特注

*4 : ベタの場合0.5mm

*5 : 0.4mmぐらいでも作ってくれる

*6 : 70umでは最小パターン幅/間隔が0.254mmになるので選択は難しい……

面付けルール

Readme before ordering PCB online.PDFより抜粋。

elecrow_panalizing.png

  • 同一基板の面付け
    • 試作時は面付け代がかかる(Fusion/Seedは無料)
    • 量産時は無料。
  • 異種基板の面付け
    • 5種類まで。
  • 面付けはV-cut処理

面付けデータ

How to Reduce Cost with Panelizing Serviceに説明がありますが、試した限り「外形線でV-cutラインを入れて、枠外の外形線レイヤーに『V-cut』の注釈を入れて」おけば処理してくれます。

  • Vcut線は外形線に書き込む。
  • 最小基板サイズ : 8cm×8cm(実際は5cm×5cm以上っぽい)
  • Vcutとパターンの間は0.7-0.8mm程度離す(板厚1.2mm以下は0.6-0.7mm)
    • 実際は0.4mmぐらいでも作ってくれます。

ガーバーデータの形式

Fusion PCB/Elecrow/PCBWayの3つは一緒です。

  • 部品面パターン : .GTL
  • 部品面レジスト : .GTS
  • 部品面シルク : .GTO
  • 半田面パターン : .GBL
  • 半田面レジスト : .GBS
  • 半田面シルク : .GBO
  • 外形線データ : .GML
  • ドリルデータ : .TXT

ステンシル(メタルマスク)製造時。

  • 部品面マスク : .GTP
  • 半田面マスク : .GBP

注文から届くまで

送料$20だったので、OCS/ANA Expressで注文しました。

  • 6/30 注文
  • 7/04 Traceable
  • 7/05 国内着
  • 7/06 基板到着(佐川)

注文から6日後に到着してしまいました。早い。2週間かかるFusionはもとより、P板頼むより早いんですけど(苦笑)

2回目

  • 7/15 注文
  • 7/20 Traceable
  • 7/21 国内着
  • 7/26 基板到着(佐川)

国内の輸入申請で4日止まるという珍事。「Prototyping Board」の意味がわからなかったらしいんだけども、OCS/ANAさんはもうちょっとしつこく電話してくるか、そのままPrototyping Boardでググるなりしてほしい。

3コールぐらいで切れる電話なんて出られないよ。

UPSとかFedexとかなら、そんな凡ミスはしない気がしてきた。

基板の品質

elecrow_pcb.jpg

上がElecrowで、下がFusion PCBです。高解像度の画像置いておきましたので、クリックすると拡大します。

シルクが断然綺麗ですね。シルク位置は若干ずれてますが、個人的には許容範囲です。そしてP板でハズレ工場引いたときよりも綺麗です(笑)

2回目

elecrow_pcb2.jpg

シルクがずれてパッドの上に完全に乗ってる。そして前回よりもシルクの印刷が汚くなってる。どうしよ……。

→サポートに問い合わせたら再製造してくれました。

量産製造

200枚ほど製造してみました。

elecrow_pcb_batch.jpg

  1. レジスト不良
  2. 基板にキズ
  3. ホール潰れ(ただしP板でもパッドが小さいと言われ製造拒否られた幅*7
  4. シルク汚れ

その他、ホール潰れ(ハンダ埋まり)が1つ、細かいキズや汚れは数えられないぐらいありました。+10%ぐらい余分に製造して検品しないとダメな感じです。

*7 : ホール経1.8mm、ランド経2.4mm。推奨ランド経は満たさないけど、製造基準書は満たしているのでなんで拒否られたのか謎。しかも以前は結構な数を問題なく製造してもらっていて、再製造の度にルールの厳しくなるP板の謎。

まとめ

  • 値段やデザインルールはFusionと同じぐらい。
  • Fusionよりもオーダーの融通は効かない。
  • OCS/ANAを使うと7日ぐらいで届けてくれる。*8
  • シルクが綺麗。
  • 注文枚数より2~3枚余分に入ってる。
  • 1割ぐらい多めに製造して検品した方が良い。

この記事を書いてから数年経ちましたが、ほぼほぼElecrowしか使用しなくなりました。

Elecrow紹介リンク(利用者側500point/紹介者側1000point付。紹介リンクの詳細

*8 : Fusionは何を選んでもシンガポール経由で送ったりして、早く届ける気がない。

関連記事

ボリュームの音質改善。L型とT型アッテネータ

はてブ数 2016/06/22電子::アンプ

はじめに

onshitsu-r01.png

抵抗の場所と音質の謎で述べたとおり、抵抗には「音質への影響が大きい要素」と「音質への影響が比較的小さい要素」があります。

  • 直列要素は影響が大きい(図のR1)
  • 並列要素は影響が小さい(図のR2)

ボリュームは、可変抵抗という物理的制約上音質が良いものを利用しても固定抵抗に比べたら大きく劣ります。擬似Lアッテネーターはこの特性を利用して、ボリュームの音質を改善する方法です。

不思議な現象

volume-T_01.png

今回の実験回路です。VRは10KΩに固定して話を進めます。

R1とVRは擬似L型アッテネーターを構成しています。R1は2K~4.7KΩぐらいの抵抗を利用します(入力の大きさによる)。

R2は入力抵抗です。直列要素ですので抵抗があればあるだけ音質が劣化するはずでした。実際、今まで製作してきたアンプでは、R2は接続せず、常に0Ωにしています。

しかしこれだけでは理解できない現象に出くわしました。この回路では、R2を接続したほうが音が良かったのです

最初は2KΩぐらいで試したのですが、抵抗値をあげるとより音が良くなります。具体的には、R2として10KΩぐらいを接続すると一番音質が良くなりました。22KΩでは、オペアンプ入力端子のインピーダンスが上昇しすぎるのか、音質が低下し始めました。

つまり擬似Lアッテネータよりも、擬似Tアッテネーターのほうが音が良かったのです。

本当に音質を改善しているのか?

これまでの状況では、単に「オペアンプにとって入力インピーダンスがほどほどにあると音質が良くなる」という可能性を否定できませんので、きちんとしたT型アッテネーター回路を製作して検証しました。

volume-T_02.png

R1=2K(LGMFSA)、R3=1K(秋月カーボン抵抗)として、R2(LGMFS)を0Ωと10KΩで比較してみました。明らかにR2(LGMFS)を付けた方が音質が良くなります。

今度は逆にR3をLGMFSの1Kに変更した上で、R2を秋月カーボン抵抗の0Ωと10KΩで比較してみました。さすがに微妙なところですが、この場合もR2を付けた方が音質が良くなりました。

試しにR3をが切断してみると、R2の種類によらず存在しない(0Ωの)ほうが音質が良くなりました。よってこの現象は「R2とR3の何らかの相互作用によるもの」と考えられます。

また「R2の抵抗の種類によらず音質改善効果があり」、音質の良い抵抗のほうが効果が高い言えます。

オペアンプでない場合

昔、抵抗の音質をチェックしたときは、FETバッファアンプを使用しました。このとき、R2に相当する抵抗は入れない状態が一番良かったのですが、本当にそうなのか再度確認してみました。

volume-T_03.png

結論から言うと、R3にボリューム(2CP601)を付けた状態で、手持ち抵抗でもっとも音質が優れるRT0603をR2につけても音質が劣化しました。

つまり、この現象は「オペアンプの非反転入力に接続したときに改善効果があるが、FETバッファアンプのような構成では効果がない」ということが分かりました。

音質改善能力の差

さらに検証してみると、R2による音質改善はオペアンプによって大きく異ることが分かりました。改善が大きかった順に並べます。

オペアンプ電圧ノイズ電流ノイズ入力バイアス種類
LME497214nV(1K)4fA(10K)40fAbipolar
LMP77165.8nV(1K)10fA(1K)50fACMOS
LT16773.2nV(1K)300fA(1K)2nAbipolar
LMP77323.0nV(1K)1.1pA(1K)1.5nAbipolar
LT18073.5nV(10K)1.5pA(10K)1uAbipolar
LT62032.9nV(10K)0.75pA(10K)1.3uAbipolar
OPA23654.5nV(100K)4fA(10K)0.2pACMOS

データシートより抜粋。値はTypicalです。各オペアンプの測定条件は同一ではありませんので、相互比較としては誤差を含む値と思ってください。

観測した現象

他にも検証したことを含めまとめておきます。

  • 擬似Lよりも、R2を付けて擬似Tにしたほうが音質が良くなる。
  • ただしオペアンプ等の非反転入力であること*1
  • この現象はT型アッテネータのR3へR2が影響することで起こっている。*2
  • R2の抵抗値はR3の2~10倍程度がよい。ただし約20倍を超えると音質が悪化する。
  • オペアンプの種類により、改善能力に差がある。

*1 : 反転入力側も効果はあると思いますが、反転入力の時点で「入力信号と入力端子間」に抵抗が付いているので意味はない。

*2 : R3が存在しなければ、R2がついていない(ジャンパした)ほうが音質が良い。

仮説

volume-T_10.png

経路Aは入力信号の通り道です。入力信号は「R1とR3の分圧で減衰され、R1とR2を直列要素、R3を並列要素」としてオペアンプに入力されます。ですので、入力信号から見たらR2の抵抗が無いほうが良いことになります。

そしてオペアンプには入力換算電圧雑音というものが存在します。入力換算電圧雑音は、オペアンプの音質に深く関わってくるものですが、それは実際にオペアンプ入力端に発生するわけではありません。ただしアンプ回路を計測してきた実感として、オペアンプはオーディオ信号などを入力して動作させるときに、アンプの動作状況によって入力端子に雑音を発生させることがあります。*3

経路Bの電圧はR2とR3に印加されます。R3には「入力信号」と「オペアンプからの雑音」の2つの信号がかかることになります。雑音信号が入力信号に対して影響を与えることで、入力信号を歪ませます。

ところがR2があると、「オペアンプからの雑音」がそのままR3に印加されることはなくなり、雑音がR2/(R2+R3)されます。つまりR2が大きければ大きいほど雑音が減ります。

一方で、経路Bには「オペアンプの入力換算電流雑音」も生じます。この雑音は、信号源のインピーダンス(R2+R3)が大きくなればなるほど大きくなります。

  1. R2が大きいほど、R3で生じる信号歪みは小さくなり、音質が向上する。
  2. R2が大きいほど、入力換算雑音による歪みと、入力信号に対するR2そのものによる歪みが大きくなり、音質が劣化する。

この推察は、R2が大きすぎてもいけないなどの観測現象をよく説明できます。音質改善効果が大きいオペアンプは、入力換算電流雑音が小さいので(一部例外)、R2よる音質劣化が少なく改善効果が大きいと考えられます。

*3 : 例えばアンプの出力が大きく切り替わるときに、電流を急激に吸い取る(吐き出す)などしたり、電源由来のノイズが入力に漏れることもあります。

検証

仮説を検証するため、T型アッテネーターに細工をし次のようにしてみました。検証はR1=2K, R2=1K, R3=3K, U1=LME49721です。

volume-T_11.png

もし仮説が正しい(オペアンプ由来の雑音が音を歪める)のならば、U2を接続したとき音質が劣化し、またその劣化の仕方はオペアンプによって異なるはずです。

まずR9=0Ω(ジャンパ)として検証しました。U2に使用した時、狙い通り音質が劣化しました。劣化が小さかった順にオペアンプを並べます。

  • LT1807
  • OPA2365
  • LME49721
  • LMP7732
  • LT1677
  • LMP7716
  • LT6203

こうして見ると、電流ノイズなどのパラメーターと相関はないことが分かります。

続いてU2を最も影響が大きかった「LT6203」に固定し、R9に抵抗を入れて検証しました。

  • R9の抵抗値が大きければ大きいほど、影響を受けない
  • R9の抵抗の種類は全く影響がない

まとめ

  • オペアンプなどの入力にボリュームがつながっている場合、入力抵抗R2を付けた方が音質が良くなる。*4
  • R2の抵抗値は、T型アッテネーターのR3の2~10倍程度が良い。
  • R2による音質改善は、オペアンプ由来のノイズ(雑音)をR3に対し印加するのを軽減する効果による。
  • オペアンプの入力換算電流雑音が小さいほど、R2の抵抗値を大きくして大きな改善効果を得られる(例外あり)。

その他、信号源インピーダンス(究極的にはR3の値)によって、音質が最適になるオペアンプが異なるということも分かりました。

擬似L型(擬似T型)アッテネーターは音量調整がしにくいのですが、R1を付けずに通常のボリューム接続にR2として抵抗を接続するだけでも音質が劇的に改善することがあります。

実際に試してみたご報告や追試、考察へのご意見、感想、ツッコミなどありましたらコメントいただければ幸いです。*5

*4 : ボリュームが通常接続の場合も、T型のR1=R3=VRとみなせるので同様です。

*5 : そういえば、良い抵抗でT型にすると十分な音質になるので、長年製作中だった電子ボリュームは辞めました。結局最大振幅と電源の問題がつきまとい、汎用性と音質を高めると大型化せざる得なかった電子ボリューム。

追記 2021/08/28

最近テストしている回路(疑似Lおよび電子ボリューム)では、総じて「R2に相当する抵抗は付けない」ほうが音質がよくなります。

当時より全体的に試聴環境が向上したいるため、差がわかりやすくなったのも一員ですが、オペアンプの種類や動作条件などにもよるのかもしれません。

D級ヘッドホンアンプ Ver2 / pwm-hpa2

はてブ数 2016/05/28電子::HPA

D級ヘッドホンアンプを、専用ICを使わずに、超高速(35MHz)に発振させ、電池2本という低電圧で動作させた、画期的かつ高音質のアンプです。

目次

D級ヘッドホンアンプの回路を公開して早4年。ようやくキットにしても良いかなという音質になったので、Ver2として公開します。

はじめに

過去、D級ヘッドホンアンプを実用化した例はほとんどなく、あったとしてもスピーカー用のD級アンプに抵抗を繋いでヘッドホンを鳴らしていた程度でした。

4年前、専用ICを使わないD級ヘッドホンアンプの回路公開して以来、たいへん多くの方に作って頂きましたが、D級の欠点である「高域の再現性」がやや劣る問題がありました。

それから2年後に、VerUpとして高速コンパレーターとロジックICを使った高速発振回路により、高域の問題を解決。それにより本格的なヘッドホンアンプへと進化しました。

本回路はそれを更に改良したものになります。

Ver2の特徴

  • 音を歪ませることなく35MHz発振させている
  • 出力バッファが6パラになり、低インピーダンス出力になった。

D級アンプは発振周波数が速ければ速いほど音も性能も格段に良くなるのですが、一般的なMOS-FET素子はそこまでの高速動作に追従できません。例えば、かの有名な「TA2020」の発振周波数は300KHz程度(本アンプの100分の1)しかありませんし、市販されているほとんどのD級アンプ素子は1MHz以下の発振周波数です。*1

このヘッドホンアンプは超高速ロジックIC(中身はMOS-FET)をパラレル使用することで、高速性と低出力インピーダンスを実現しています。ちょうど、バイポーラトランジスタのLAPT素子と同じ思想で、遅くて大きいMOSを使わずに、速くて小さいMOSを複数使用することで高速性と低インピーダンス化を同時に実現しています。

また発振周波数が速くできても、周波数が速くなればなるほど左右チャンネルが互いに干渉して音が歪むという現象も発生します。この問題を解決するため、左右のコンパレーター電源を分離するなど回路上の工夫をし、プリント基板のレイアウトも色々と工夫しています。

*1 : 最新のものでようやく1.5MHzとかそういうレベルです。

回路図

pwm-hpa2.png

  • 回路原理は元の記事を参照してください。
  • 電池は2本専用です。4本だと音が歪みます。
  • R1/R2は結合や誘導による信号の回りこみを軽減するフィルタを構成しています。とても重要です。
  • 全消費電流:約55mA(単3ニッケル水素で40時間程度)

コンパレーターについて(2023/01/07追記)

  • ADCMP600の代わりに、LTC6752またはTLV3601が使用できます。
  • コンパレーター変更によりノイズが出る場合、ノイズ対策や発振周波数を下げる対策が必要です。
  • ADCMP600/LTC6752は±1.00Vで動作しますが、TLV3601は最低でも±1.05V程度が必要です。
  • 同一回路につけた場合、音質は ADCMP600 < TLV3601 < LTC6752 となります。そのときの発振周波数は ADCMP600 < TLV3601 = LTC6752 です。

音質

おそらく言われなければ誰もD級アンプだと気づかないと思います(苦笑)

手元の環境では、低電圧ヘッドホンアンプVer3(op-dbuf3)の回路と、双璧のような感じになっていまして、音質的に抜きつ抜かれつデットヒートを繰り返しています。

op-dbuf3と比べると、好みもあると思いますが、こちらのほうが音は良いかと思います*2。更に改造したい人は、配線が大変ですけどもチップ抵抗に載せ替えてみても良いかもしれません。

*2 : op-dbuf3も改良すると今より音が良くなる模様で、その際の比較は難しい。今までの基板でも簡単に再現可能なのでキットの説明書に改良方法を書いてあります。検証が終わったら記事にも反映させます。

キット化

pwm-hpa2.jpg

低電圧HPA(op-dbuf3)と同じTB-56ケースに入るようにレイアウトしてキット化しました。高速ロジックICの、NC7WZ16がとても小さいのでハンダ付け難易度は高めです。

また入出力端子には4極ジャック(GND分離対応)を使用しました。3極でもそのまま使用できますし、4極仕様のヘッドホンをお持ちの方は、一味違った音質を楽しめます。*3

*3 : 4極のピンアサインはプラグ先端からL/R/LG/RGです

購入はこちらから

関連の頒布物もリンクしておきます。

販売元(メーカー)がBispaになっている商品については、品切れの際はBispa様にお問い合わせください。

その他

  • 手元の環境では十分にテストしていますが、きちんとハンダ付けされ、かつ、ちゃんと電池が残っている状態で音が歪むなどの問題がありましたら、具体的にコメントにてお知らせいただければ幸いです。*4
  • オシロで観測すると出力にスイッチノイズが若干残っているのは仕様です。再生音には影響はありません。むしろ、スイッチノイズを完全に消そうとすると音質が悪化します。
  • ユニバーサル基板で再現するのはかなり大変だとは思いますが、絶対に不可能というわけでもないとも思いますので(この辺使えば)、興味ある方の挑戦をお待ちしています。

*4 : その場合、基本的にはR3/R4/C3/C4のいずれかの値を大きくする(3Kや330pF)他解決法はありません。ご了承ください。

作例ほか

感想・作例、心待ちにしています。

導体性高分子コンデンサ聴き比べ

電解コンデンサは、OS-CONに狙いを定めてから、もっぱらOS-CONのSEPCばかり使ってきましたけど

「はたしてSEPCってそんなに音いいの?」

という疑問が湧いてきたので検証してみました。

検証

一昔前は固体電解コンデンサと言えばOS-CONしかなかったのですが、現在では導体性高分子コンデンサを各社が開発・製造しています。ですので、他社製品も検証してみようというのが今回の記事です。

pcap.jpg

  • Panasonic SEPC 2.5V 2700uF / 10mΩ / σ:0.1
  • ニチコン PLG 2.5V 2700uF / 8mΩ / σ:0.08
  • ニチコン PLG 2.5V 3900uF / 8mΩ / σ:0.08
  • 日本ケミコン PSC 2.5V 2700uF / 8mΩ / σ:0.1

いずれもほとんど同サイズ(φ10mm×12-13mm)でほぼ同性能の導体性高分子コンデンサの大容量低ESR品(8-10mΩ)になります。新しいD級ヘッドホンアンプの電源用コンデンサとして使用しました。

SEPC

これまで数多くのアンプで使用してきました。元々SANYO製で、SANYOがなくなったあとはパナソニックが製造を引き継いでいます。

OS-CONは元々有機半導体コンデンサについた名称で、現在の固体コンデンサ(導体性高分子コンデンサ)のパイオニアとなった技術です。

SPECは高分子コンデンサの中では、大容量・低ESR品になります。

os-con.png

https://industrial.panasonic.com/jp/products/capacitors/polymer-capacitors/os-con

PLG

刻印が「LG」なのでニチコンLGと呼ばれることが多いようですが、以前はLGというシリーズ名だったようですが、現在の正式名はPLGです。刻印はLGになります。高分子コンデンサの中では、SEPCと同様に大容量品に位置します。

nichicon.png

http://www.nichicon.co.jp/products/solid/solid_daia_f.htm

PSC

刻印「C」で型番がAPSCで始まるためAPSCとも呼ばれることがありますが、正式名はPSCです。高分子コンデンサの中では標準品に位置しますが、他社との比較では「大容量品」に相当します。

ni-cemi.png

https://www.chemi-con.co.jp/download/(pdf)

聴き比べ

ソケットを使わず、めずらしくすべてハンダ付けによる検証をしました。*1

PSC >> PLG 3700uF > PLG 2700uF >> SEPC

という具合でした。SEPC音良く無いじゃん!(笑)

PSCやPLGはエージングが進まないと結構酷い音がするのですが、SEPCはその点少し安定している印象でした。

*1 : エージング含め、とても時間かかりました……

追加検証

大容量品ではなく、小型品(φ6.3~8)でも検証してみました。検証回路は異なるものを使用しています。

  • SEPC 6.3V 560uF / 7mΩ
  • SEPC 16V 470uF / 10mΩ
  • PSF 16V 470uF / 10mΩ
  • PSC 6.3V 560uF / 8mΩ
  • PSC 16V 470uF / 10mΩ
  • L8 6.3V 1000uF / 9mΩ
  • S8 6.3V 680uF / 8mΩ

PSFはPSCの低ESR品です。6.3V品が流通していないため、16V品で代用しました。

L8、R8はFPCAPシーリズの1つです。FPCAPは元々富士通が開発・製造していたコンデンサのシリーズですが、現在はニチコンが買い取りニチコンより販売されています。

聴き比べ

PSF 16V > PSC 16V > PSC 6.3V > S8 > L8 > SEPC 16V ≥ SEPC 6.3V

やはりPSCの音質が優れる結果に。そして比べた時のSEPCの音の悪さ(苦笑)

ついでに、HZやMCZなどの高分子ではない従来の低Zコンデンサと比較してみましたが、SEPCより明らかに劣りました。

追加検証2 2021/07/22

KEMET_A750_16V.png

KEMETのA750というタイプの高分子コンデンサを購入したので、追試してみました。

  • PCM2704 DAC Ver2の電源部
  • ヘッドホンアンプの信号部*2

いずれもECPU 0.1uF(フィルムコン)が並列に入っています。*3

  • KEMET A750 16V 470uF / 13mΩ / A750KS477M1CAAE013
  • SEPC 16V 470uF / 10mΩ
  • PSF 16V 470uF / 10mΩ
  • PSC 16V 470uF / 10mΩ

PSF 16V > A750 16V > PSC 16V > SEPC 16V

A750とPSFは僅差です。好みでも変わってくるかと思います。音はたしかに違うのですが、帯域によって得意不得意があるような感じです。

  • 奥行き感や音の綺麗さが良い: PSF 16V
  • 低音が良い(多分): A750 16V

注意として、A750 16V 470uFとPSF 16V 470uFはスペックこそ一緒ですが、A750が直径8mm、PSFが直径10mmとPSFの方が大きく、そしてESR低くなっています。固体コンは、同容量同電圧でも「大きさが大きくなるほどESRが低く性能が良くなる(音が良くなる)」ことが多く、このことからA750が不利な比較とも言えます。

追加検証2-2

同サイズ、同容量、同耐圧と条件を揃えて、A750とPSFを比較しました。

  • A750 6.3V 820uF / A750EM827M0JAAE008
  • PSF 6.3V 820uF / APSF6R3ELL821MF08S

比較結果。

A750 6.3V 820uF > PSF 6.3V 820uF

サイズを揃えてしまえば、A750に軍配が上がるようです。DigikeyやMouserで買いやすいことを考慮すると、これはなかなか良さそうです。

*2 : 低電圧ヘッドホンアンプ Ver3 (op-dbuf3)で言うところのC3/C4相当。

*3 : 並列のフィルムコンを入れないないほうが差が顕著に現れますが、普段からフィルムコンを並列に入れるので普段の状況でテストしました。

まとめ

  • 導体性高分子コンデンサも、種類によって音が違う
  • SPECは音質よくない
  • 低ESRはだいたい正義

これからはKEMETとPSFをメインで使っていこうかなと思っています。

補足

SEPCの性能が悪いわけではないのでそれだけは誤解しないでください。これは性能テストではなくて音質テストです。性能テストならば、もっと全く別の評価をする必要があります。

また空間再現能力を最重要視してテストしていますが、音質に関する要素は人それぞれ好みがあり、ましてコンデンサはオーデオ的な音色の差が出やすい素子ですので、その点はご理解願います。